Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 93(9): 093527, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36182470

RESUMO

Capacitive plasma pickup is a well-known and difficult problem for plasma-facing edge diagnostics. This problem must be addressed to ensure an accurate and robust interpretation of the real signal measurements vs noise. The Faraday cup fast ion loss detector array of the Joint European Torus (JET) is particularly prone to this issue and can be used as a testbed to prototype solutions. The issue of separation and distinction between warranted fast ion signal and electromagnetic plasma noise has traditionally been solved with hardware modifications, but a more versatile post-processing approach is of great interest. This work presents post-processing techniques to characterize the signal noise. While hardware changes and advancements may be limited, the combination with post-processing procedures allows for more rapid and robust analysis of measurements. The characterization of plasma pickup noise is examined for alpha losses in a discharge from JET's tritium campaign. In addition to highlighting the post-processing methodology, the spatial sensitivity of the detector array is also examined, which presents significant advantages for the physical interpretation of fast ion losses.

2.
Rev Sci Instrum ; 91(9): 093502, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33003824

RESUMO

Upgrades to electronic hardware and detector design have been made to the JET thin-foil Faraday cup fast ion loss detector [Darrow et al., Rev. Sci. Instrum. 75, 3566 (2004)] in anticipation of the upcoming deuterium-tritium (DT) campaign. An improved foil stack design has been implemented, which greatly reduces the number of foil-to-foil shorts, and triaxial cabling has mitigated ambient noise pickup. Initial tests of 200 kHz digitizers, as opposed to the original 5 kHz digitizers, have provided enhanced analysis techniques and direct coherence measurements of fast ion losses with magnetohydrodynamic activity. We present recent loss measurements in JET deuterium plasmas correlated with kink modes, fishbone modes, edge-localized modes, and sawteeth. Sources of systematic noise are discussed with emphasis on capacitive plasma pickup. Overall, the system upgrades have established a diagnostic capable of recording alpha particle losses due to a wide variety of resonant fast ion transport mechanisms to be used in future DT-experiments and modeling efforts.

3.
Rev Sci Instrum ; 81(10): 10D326, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21058456

RESUMO

We have examined the observed currents in the front foils of the JET Faraday cup lost alpha particle diagnostic KA-2. In particular, we have sought to understand the currents during Ohmic plasmas for which the ion flux at the detectors was initially assumed to be negligible. We have considered two sources of this current: plasma ions (both deuterium and impurity) in the vicinity of the detector (including charge exchange neutrals) and photoemission from scattered UV radiation. Based upon modeling and empirical observation, the latter source appears most likely and, moreover, seems to be applicable to the currents in the front foil during ELMy H-mode plasmas. A very thin gold or nickel foil attached to the present detector aperture is proposed as a solution to this problem, and realistic calculations of expected fluxes of lost energetic neutral beam ions during TF ripple experiments are presented as justification of this proposed solution.

4.
Rev Sci Instrum ; 81(10): 10D330, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21058457

RESUMO

The loss of MeV alpha particles from JET plasmas has been measured with a set of thin foil Faraday cup detectors during third harmonic heating of helium neutral beam ions. Tail temperatures of ∼ 2 MeV have been observed, with radial scrape off lengths of a few centimeters. Operational experience from this system indicates that such detectors are potentially feasible for future large tokamaks, but careful attention to screening rf and MHD induced noise is essential.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA